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Abstract

Vector Code Analyzer (VCA) is a static code analysis tool that analyses the source
code after the successful compilation, and the findings will be reported in text for-
mat. However, the findings reported by VCA are hard to comprehend by the user if
the necessary pieces of information are not visualized. This thesis aims to provide a
concept for the visualization of data flow so that the users concerned with the static
code analysis can evaluate the result e↵ectively and trace the reasons for findings
straight away.

Data flow analysis is a technique used to analyze static source code for potential
vulnerabilities like null pointer issues, divide by zero error, bu↵er overflow. With
the help of data flow analysis, it is possible to obtain the possible set of values cal-
culated at various points in a program, which helps understand the whole program
quite e�ciently.

There are several automated tools for static data flow analysis, but most of the
tools have a limitation in data flow visualization. Mostly the existing tools will
provide only the details of errors with line numbers, and then users have to analyze
to find out the actual cause manually. It is a tedious task to trace the error and
understand the code if there is no visualization method, depending on the number
of code lines.

This thesis proposes a concept to solve the existing limitation in data-flow anal-
ysis and helps users understand the source code and the findings made by the vector
code analyzer without any di�culty by implementing a simple and e↵ective means
of data flow visualization by a click and hovering of variables.

Keywords: Vector Code Analyzer, Static Analyzer, Data flow analysis,

Visualization
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1 Introduction

Static code analysis or source code analysis analyzes the code without the code’s
actual execution. It is similar to White-box testing (tests the internal structures of
an application), usually performed as part of code review during the implementation
phase of the Security development life cycle. The importance of doing the static
analysis is that it is always better to check for defects and fix errors early, which
enables the user to significantly reduce the amount of downstream work added to
the project and is a surefire method to avoid multiple obstacles along the way.
The state of software is becoming more and more complex as well as sophisticated.
Today, for example, the average automobile may contain over 1,000 code executing
Microcontroller Units (MCU) and as much as 100 million lines of code! [18]. This
enormous electronic surface area, especially in safety-critical applications, such as
automotive, medical devices, or avionics software, demands a rigorous engineering
approach to software to approach defect-free code. Failing to check with at least
one static analysis tool significantly raises the risk of deploying or releasing the
applications with defects, it can lead to exploitable code that malicious hackers can
use to crash the system, expose sensitive data, and more. In the case of safety-critical
software, the consequences of software vulnerabilities can be far more severe.
Several kinds of research are in progress to figure out a systematic method to find
the defects and improvise the existing static analysis tools to tackle this situation.
According to ISO 26262, it is necessary to check the code with an automated static
code analysis tool [29]. The UK Defense Standard 00-55 requires using a Static
Code Analysis tool on all safety-related software in defense equipment [25].
Static analyzers available today report many defects specifying their location of
occurrence through line numbers in source code. A user of such tools must first go
to the specified line number for each defect and then analyze the program manually
to identify the root cause for each defect, which may be nontrivial. Hence, there is a
need to provide an e↵ective analysis aid to developers, facilitating easy identification
of root causes of defects identified statically and understanding the data flow in
general. This is where the importance of data flow visualization comes in. With
the visualization of data flow, the complexities mentioned above can be minimized,
and it eases the user to understand the findings made by the Vector Code Analyzer,
which in turn results in reducing the time for understanding the code and finding
the root cause for defects.
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1 Introduction

1.1 Motivation

As the coding becomes highly complex and complicated, analysis tools are also in
great demand. It is a must to analyze the source code and verify it is error-free if
it deals with critical scenarios, and any omission or unnoticed error might end up
causing danger to human life. Some of the significant issues that occurred due to
flawed static analysis:

• The recent recall of vehicles by major automotive manufacturers due to soft-
ware errors [8].

• The explosion of Ariane 5 due to the software overflow error [15].

• The halting problem occurred in USS Yorktown due to a divide-by-zero error in
a database application that propagated throughout the ship’s control systems
[33].

These are some of the incidents to highlight the importance of static analysis. This
is why data flow and visualization are going to play a vital role. Data flow analysis
is an essential technique for carrying out useful static analysis. It is crucial for un-
derstanding the code because it is impossible to analyze the code e↵ectively without
adequate information regarding how the data flow occurs within a particular code
segment. However, no e↵ective method is provided by any of the static analysis
tools available to understand the source code’s data flow. It is an area that remains
unnoticed, or there is much room for improvement. This lack of visualization makes
the analysis of findings/results generated by the static analyzers more complex.
This thesis aims to provide a concept for visualizing the data flow so that the user is
concerned with analysis can understand the code much better, thereby reducing the
risk of errors going undetected or neglecting errors. The significance of data flow
visualization and its role in ease out the findings made by Vector Code Analyzer
leads to pursue this Master Thesis.

1.2 Research Questions

1. What is the information necessary to understand the finding of a static code
analysis tool?

2. How can this information be visualized in a way a user can comprehend?

3. How to present only the information necessary for a specific finding?

4. How can the user specify what he is interested in (e.g., which finding)?

10



1 Introduction

1.3 Thesis Outline

• Chapter 1: Introduction - The motivation of the thesis is explained with a basic
introduction to the importance of DFA, and it is visualization, the research
questions are formulated.

• Chapter 2: Static Code Analysis - Briefly describes static code analysis, it is
techniques, and its significance.

• Chapter 3: Explains the existing static code analysis tools, analysis of the
result, and existing tools’ limitations.

• Chapter 4: Vector Code Analyzer - This section explains the static analysis
tool VCA; it is design and implementation.

• Chapter 5: Existing state of Vector Code Analyzer - This chapter will provide
a better insight about the analysis and drawbacks of the output made by the
analyzer.

• Chapter 6: Concept - This chapter focuses on the solutions for overcoming the
existing situation.

• Chapter 7: Conclusion - A summary of the work and its relevance concerning
the existing scenario.

• Chapter 8: Future scope of work - This chapter will discuss the improvements
that can be made.
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2 Code Analysis

Code analysis is the process of analyzing code to find whether the code is e�cient,
robust, safe, and to understand its correctness and its expected performance [5]. It
mainly focuses on verifying code correctness and its optimization. Program correct-
ness is intended to analyze whether the code/program is working as it is meant to
be, and optimization is done to improve the code performance by e�ciently using
resources. The analysis can be performed either during the execution of a pro-
gram that is during run-time (Dynamic Code Analysis) or without running the code
(Static Code Analysis).

2.1 Dynamic Code Analysis

As its name indicates, dynamic code analysis is an analysis that performs during the
code’s execution. It is necessary to identify and create test inputs for performing
dynamic code analysis and create a test strategy to cover almost all possible paths.
The source code has to be compiled into an executable file; otherwise, it is impos-
sible to perform the analysis as it does not support the code having compilation or
build errors. Some of the dynamic testing examples are the unit test, integration
test, system test, and acceptance test.
There exist several dynamic code analysis utilities and tools intended for executing,
provide findings and analysis. Many contemporary development environments al-
ready have dynamic analysis tools as one of its modules. Such is, for example, the
Microsoft Visual Studio 2012’s debugger and profiler [13].
Dynamic analysis is executed by passing a set of data to the input of the program
is checked. That is why the e�ciency of analysis depends directly on the input test
data’s quality and quantity. It will help identify resources consumed, the degree of
code coverage with tests, other program metrics, program errors, and vulnerabilities
in the program [13].
Dynamic testing allows users to make sure that the product works well or reveals
errors showing that the program does not work. The second goal of the testing
is a more productive one from the viewpoint of quality enhancement, as it does
not allow the users to ignore the program’s drawbacks. Even though no defects
have been revealed during the testing, it does not necessarily mean there are no
errors at all. Even 100 percentage code coverage with tests does not mean there are
no code errors since dynamic testing cannot reveal some issues like logical errors.
Code coverage, memory error detection, fault localization, invariant inference, se-
curity analysis, program slicing, and performance analysis is some kind of dynamic
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2 Code Analysis

analysis [14].

2.2 Static Code Analysis

Static code analysis uses several techniques that analyze the programs by examin-
ing the source code without the actual execution of code. The main advantage and
benefit of static code analysis are that it helps identify the defects and problematic
code constructs during the early stage of development (between coding and unit
testing), which results in improving software quality and cost reduction [71]. Static

Figure 2.1: A typical static code analysis

code analysis plays an integral role in maintaining e�ciency and code quality be-
fore unit testing, and it helps discover the hidden defects that might not be able
to find during other verification and validation processes. Approximately 20 to 30
percent of all software will contain more than 50 percent defects, and static code
analysis will reduce the post-release failures by more than 50 percent, which results
in the reduction of development cost by not less than 30 percent [42]. Nowadays,
as the software dealt with more safety-critical applications, with possible human
lives depending on their uninterrupted functionality and the code complexity is get-
ting high, static code analysis is being widely used, and because of this, there exist
several static code analysis tools for prominent languages like C/C++, Python, C-
sharp, and many others. How static code analysis di↵ers from regular inspection
and testing is, it works fully automated, and there is no need for elaborate test set-
tings. Static code analysis identifies the program behavior by checking the program
structure, elements or by taking the approximation of the program states.

13



2 Code Analysis

Figure 2.2: The average cost of fixing defects depending on the time they have been
made and detected

[71]

2.2.1 Common Defects

As mentioned earlier, the static code analysis helps to discover some hidden defects.
Some of the major defects that can be unearthed are:

• Division by Zero

It is a logical software error that occurred due to the division of a number by
zero, and it leads to a runtime error because the value getting after division is
undefined. When trying to divide a number by an integer zero on a processor of
the x86 and x86/64 processor families, a hardware exception is generated (by vector
0); accordingly, a C/C++ program compiled into machine code will halt program
execution or yields unpredictable computation results [12].

Figure 2.3: Example of Division by zero error

In the above code fragment, it shows the possible occurrence of division by zero
error. If the parameters ’a’ and ’b’ have the same value, then ’c’ might become zero,
it will result from the division statement to zero, causing the program to crash.
One of the significant incidents that occurred due to division by zero error is the

14



2 Code Analysis

halting of USS Yorktown(CG-48). On September 21, 1997, a division by zero error
in the ”Remote Data Base Manager” aboard the ship brought down all the machines
on the network, causing the ship’s propulsion system to fail.

• Null Pointer Dereference

A null pointer is a pointer that indicates the memory address 0 (in most cases).
According to the C standard, dereferencing a null pointer is undefined behavior,
resulting in a program crash. It could continue working silently or be transformed
into a software exception that can be caught by program code. There are, however,
certain circumstances where this is not the case. For example, in x86 real mode,
the address 0000:0000 is readable and usually writable, and dereferencing a pointer
to that address is a perfectly reasonable but typically unwanted action that may
lead to undefined, but non-crashing behavior in the application [22]. Most of the
dereferencing cases will end with causing ”segmentation fault” or ”access violation”,
thereby results in the termination of the program by the operating system.
In the given example, it is clear that the pointer ’a’ has a null value as it is initialized
with NULL. When ’b’ tries to read ’*a’, it points towards an invalid pointer and
dereferencing occurs. The same will happen even in the case of writing a value.

Figure 2.4: Example of Null Pointer Dereference

• Memory Leak

A memory leak occurs when the program allocates memory on the heap and for-
gets to de-allocate once it has finished using it. If there is a substantial amount of
memory leakage occurs, then it is impossible to allocate memory further, and the
program cannot continue execution.

The example in figure 2.5 shows that the memory leak occurs because the allo-
cated memory will go out of the scope since the corresponding free statement is not
provided.
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2 Code Analysis

Figure 2.5: Example of memory leak

• Bu↵er Overflow or Underflow

A bu↵er is a temporary area for holding data. For any statically or dynamically
allocated memory bu↵er, there is a limit for the maximum number of data elements
it can store. A bu↵er will overflow when the data (meant to be written in the bu↵er)
gets written past either before it’s beginning or after it’s ending. This way, the data
will be stored in a portion of memory that does not belong to the actual program
variable that references the bu↵er and corrupts the memory belongs to other vari-
ables or overwrite whatever data they were holding.

Figure 2.6: Example of bu↵er overflow

In the below-mentioned example, an array of size 10 bytes (range of the index is
from 0 - 9) has been declared, and in the next line, tried to store the value ’a’ in the
index range 10, here bu↵er overflow will occur because data will get written out of
the scope of the bu↵er, here beyond the right boundary of bu↵er. Underflow defects
will occur similarly but in the other memory direction.

• (Arithmetic) Integer Overflow

An integer overflow occurs when the user attempts to store a value that is larger
than the highest value an integer variable can hold. According to the C standard,
it is undefined behavior, and anything might happen due to this. Integer overflows
are the consequence of ”wild” increments/multiplications, generally due to a lack of
validation of the variables involved [54].
The explosion of the Ariane 5 rocket also happens because of an overflow (Integer
overflow) defect. The on-board computer crashed 36.7 seconds after starting when
trying to read the value of the horizont. One of the functions was to convert the
speed of the 64-bit floating-point display to a 16-bit signed integer: - + b1 b2 ... b15.
The corresponding number was greater than the permissible limit and generated an
integer overflow, which results in the crash and loss of 500 million USD [61].
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2 Code Analysis

• Uninitialized Variable

An uninitialized variable is a variable, which is declared but is not provided with
an initial value. In several programming languages, the initialization of the variable
is optional. If the variable is not initialized at the time of declaration, then the
variable will have a random value based on whatever was in the memory holding
that variable. An uninitialized variable is similar to uninitialized memory and might
cause an error during the program execution.

Figure 2.7: Example of Uninitialized variable

The variable ’sub’ in figure 2.7 is not initialized, and currently, it holds a garbage
value. Sometimes the program might run, as the uninitialized variable will automat-
ically set to value zero. However, in general, the output or the result of a function
is unpredictable.

• Inappropriate Cast

Some coding languages support to cast one type of variable to another type, which
means one data type to another (for example, Char to Int). Unfortunately, cast-
ing comes with several problems, and sometimes it may alter the variable’s value
(for example, bit truncation). Sometimes, the compiler might fail to warn about
the problem, and it remains undetected. In the given code fragment, the function
getchar will returns an integer value. However, the problem is that the value re-
turned will have a range more than that of char variable ’c’. It will create severe
problems, and the program will not behave as expected. For example, the value
returned from getchar (256) will be considered as the value 0.
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2 Code Analysis

Figure 2.8: Type cast

2.2.2 Static Analysis Techniques

To successfully trace the defect or vulnerabilities, there are various techniques to
analyze static source code. All these techniques are integrated to get a better and
e�cient static code analysis. These techniques are often derived from compiler
technologies. The primary static code analysis techniques are the following [25]:

• Control flow analysis

For understanding or doing static analysis, it is a must to know the program’s con-
trol flow. Control flow analysis is a static code analysis technique that determines
and identifies the code fragment’s control flow. It will analyze all the possible ex-
ecution paths inside a program or procedure; it will usually be flow-insensitive. A
control flow graph (CFG) is used to express the control flow.
A control flow graph is the graphical representation of control flow; it denotes all
paths that might be traversed through a program during its execution. It is essential
for performing static analysis; it can be constructed directly from the program by
scanning it for basic blocks; it is a linear piece of code without any jumps or jump
targets. As a directed graph, the node in the graph will represent a basic block, and
the edges represent the transfer of control or jumps in the control flow. A control
flow graph consists of two designated blocks to denote the Entry block (it allows the
control to enter into the control flow graph) and Exit block (Control flow terminates
via exit block). Usually, there will be only one path leading from the entry block to
the exit block.

In figure 2.9, basic blocks are indicated as BB and in the given code snippet contains
four basic blocks.
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Figure 2.9: Typical example of CFG with all basics blocks

Some examples for general control flow graphs are:

Figure 2.10: Examples for general control flow graph
[7]

(a) denotes the if-then-else loop
(b) denotes the while loop
(c) denotes a loop with two exits
(d) denotes a loop with two entry points
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• Data flow analysis

Data flow analysis is a technique used for gathering information about the possible
set of values calculated at various points in a program. It is usually performed on
the program’s control flow graph. Some of the categories of data flow analysis are
flow-sensitive and path-sensitive analysis. The flow-sensitive analysis is done based
on considering only the order of the control flow graph’s statements. The path-
sensitive analysis will also consider the conditional information at branch points
and how they influence the possible values carried by a variable.

Figure 2.11: Basic Terminologies
[10]

Definition point: It will provide the definition
Reference point: It denotes a reference to data item
Evaluation point: This point contains the evaluation of expressions [10]

The figure given below contains the control and data flow analysis of a particu-
lar code snippet. Here in this, sometimes multiple values will flow into the same
location. Consider the last print statement because it might take the value from the
first print statement where x is one or from the final conditional statement where
the value of x is 2. To understand how the actual data flow occurs, we need to
know the control flow first. In figure 2.12, control flow is denoted using the black
arrow, and data flow is denoted using red arrow edges. In the beginning, the value
of x will be one, and it will not changes until the conditional statement. After the
conditional statement, the value changes to 2.
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Figure 2.12: Control and data flow analysis of a simple code

• Taint analysis

The taint analysis is a popular method that consists of checking which variables
can be modified by the user input. All user input can be dangerous if they are not
properly checked. With this method, it is possible to check the registers and the
user’s memory areas when a crash occurs. If the tainted variable gets passed to a sink
(vulnerable functions) without first being sanitized, it is flagged as a vulnerability
[25].

• Lexical analysis

Lexical analysis converts source code syntax into tokens of information to abstract
the source code and makes it easier to manipulate. It is the first phase of the
compiler, known as the scanner. Some examples of a token are Type token (id,
number), Punctuation token (void, return), Alphabetic token (Keyword) [25].
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As mentioned earlier, there exist several tools for performing static code analysis.
This section will discuss some of the tools which are comparable with VCA.

3.1 Astrée

Astrée stands for Analyseur statique de logiciels temps-réel embarqués (real-time
embedded software static analyzer) [2]. It is a static code analyzer which is spe-
cially meant for analyzing the software written in C-programming language, and
it analyzes and proves the absence of runtime errors and faulty behavior in safety-
critical real-time synchronous C programs.[16, 49]
Astrée performs the static code analysis based on abstract interpretation (described

Figure 3.1: Performance of Astrée Code Analyzer
[50]

in the earlier section). While evaluating the analysis results, one thing can clearly
understand that it performs well (see figure 3.1). C-code analysis complies with the
ISO/IEC 9899:1999 C programming language standard and other safety standards
like ISO 26262. It supports the C programs with loops, pointers, function calls,
structures and arrays, integer and floating-point computation, and some extend of
branching. However, certain C program characteristics are excluded from the scope
analysis like backward branching, union types, dynamic memory allocation, un-
bounded recursive function calls, and the use of C libraries [50, 47]. It also includes
a rule checker which helps to check the code compatibility with certain coding rules
(MISRA, AUTOSAR, CWE, ISO/IEC, SEI CERT C) [16].
Some of the major characteristics of Astrée analyzer are:

• It is a sound program analyzer (never failed to point an error that can appear
in some execution environment)
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• Automatic (no end-user intervention is needed after parameterization)

• Highly e�cient (any complex code analysis can be performed within a short
period)

• Very precise (very few or complete eradication of false alarms)

Figure 3.2: Result analysis by Astrée
[16]

Figure 3.2 shows the results and findings made after the analysis. The analysis
outputs a list of alarms (potential errors); these errors are reported along with their
class and the location of occurrence. The occurrence or non-occurrence of errors can
be easily understood, thanks to the user-friendly GUI. It is classified based on the
colors(Red, Green, Yellow).

Red: Occurrence of at least one error
Yellow: Zero error, but at least one alarm of Class A (a potential run time error
with an unpredictable result) or B (a potential data race)
Green and Yellow: Zero error, but at least one alarm of class C (a potential runtime
error with a predictable result)
Green: No errors and alarms of class A, B, and C

It is possible to generate a report and also provide the code coverage information
[27, 16].
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Along with these, it will display all the data flow information collected by the
analyzer. In figure 3.3 displays all accesses to global/static variables and provides
information like whether it is shared or not, involved in a data race (occurs when two
or more threads in a single process access the same memory location concurrently),
the origin of the variable (from which function/process). The context menu supports
tracing the corresponding code location of variables.

Figure 3.3: Data flow analysis by Astrée

3.2 HelixQAC

It is a static code analyzer from Perforce, automatically scans (based on C and C++
coding rules) codes to find out errors and abnormal behavior. It supports various
coding and industry compliance standards, and then the report generated at the end
will specify and help realize which parts of the code need improvements. It provides
su�cient code coverage as it tracks the value of variables in the code as they would
be at run time and prioritizes the defects based on their severity, which means it
will identify those must-fix defects and provide detailed instructions to developers
to fix the source code defect. The prioritization of defects is done by making use
of specific filters, suppression, and baselines. Figure 3.4 shows the result window
of HelixQAC; it will help understand the analysis result. It will display the errors,
and it can be filtered based on their severity, the path of source files, and source
language. It will also enable the user to comment on the results found by QAC
and assign particular actions that have to be carried out. Like the Astrée Code
Analyzer, it will also support generating the report and supports handling millions
of code lines [26, 38].
At first glance, the result window seems su�cient, but as the complexity of the code
increases, the user might find it di�cult to analyze the result provided by QAC.
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Because here in the result window provides the severity, cause, location, and cause
of the error, but nothing to trace back the error’s origin. Due to this, the user will be
forced to analyze the code manually, and depending on the lines of code, complexity
increases exponentially. This is one of the biggest hurdles faced by the users these
days; even after getting so much information after the analysis, it will not be helpful
if there is no way to identify the root cause of error and data flow of variable.

Figure 3.4: Result window of HelixQAC
[26]

3.3 Parasoft

Another static code analyzer for analyzing the C/C++ code performs the analysis
based on static analysis techniques (pattern-based analysis, data flow analysis, ab-
stract interpretation, metrics, and more).
Pattern-based analysis detects constructs in the source code that are known to result
in software defects based on programming standards, such as CWE and OWASP.
It helps ensure that developers are following coding best practices, unit testing best
practices, and the organization’s development policy [1].
According to Parasoft, it comes with the largest number of checkers in the industry,
resulting in a better evaluation of code. Like the other tools mentioned above, this
tool also supports the industry standards and C/C++ programming standards. It
supports performing analysis either in the IDE (Eclipse, Visual Studio, Visual Stu-
dio Code) or in the command-line interface (for automation/continuous integration
scenarios). The result of the analysis can be generated and viewed either in the
IDE or it can be viewed as HTML/PDF/XML reports. It also supports the users in
managing testing results, prioritizing findings, suppressing unwanted findings, and
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assigning findings to developers [3].

Figure 3.5: Result window of Parasoft
[6]

Figure 3.6: Flow analysis by Parasoft
[17]

In the quality tasks view of Parasoft, violation/errors are represented as a hierarchi-
cal flow path, leading to identifying the problem. Flow path elements are represented
with di↵erent icons, and each has a di↵erent meaning. For example, the red arrow-
headed sphere indicates that the flow does not proceed as normal. Each element in
the flow path has a tooltip, and while hovering over, it provides details like error
description, path, variable causing error. It also provides the two most important
pieces of information:
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• Violation cause - This shows the source of the violation.

• Violation point - This is the point where flawed data has been used and results
in an error.

Several other static code analyzers exist apart from those mentioned above, and
all these will do the analysis and yield satisfactory results. However, these analyz-
ers have limitations when it comes to the visualization of data flow. In all these
three tools that are considered, each tool has its own limitations. In HelixQAC,
it provides so much important information, but there is no e↵ective mechanism to
analyze the provided result. The tools Astrée and Parasoft come with a mechanism
to understand the data flow and the results, but considering from user side, it has
to be improved. These two tools provide necessary information about the data flow
of variable and help to identify the source of the error.
With the existing static code analyzers, the user can perform the source code anal-
ysis, view the reports, and analyze it with various means (graph, chart, table) and
help the user to understand whether the source code is error-free. The main prob-
lem is if the user wants to understand/analyze the code and trace the actual reason
for the error, the scope of these tools is limited. Thus, even after performing the
analysis, the user has to go through the code to get a better understanding of the
code. It will become more time-consuming and complex depending on the number
of lines of code. All static code analyzers mentioned above use data flow to perform
the analysis, but there is no e↵ective method for visualizing the data flow.
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Vector Code Analyzer is a static code analyzer based on Clang/LLVM, which intends
to perform the C-code static analysis. The analysis first links the code, compiles
it, and performs analysis only if there are no compilation errors. It performs a
whole-program analysis, i.e., it operates on the linked program. The analysis will
be aborted if the code produces compilation errors and displays an error message
with information about the compilation error. These compilation errors may a↵ect
the soundness of the analysis; if it does not a↵ect the analysis’s soundness, then
the analysis will be continued by displaying a warning message about the compila-
tion error. Vector Code Analyzer only supports a subset of instructions provided
by LLVM, and the instructions out of this are detected, then the analysis will be
aborted, and an error message will be displayed. Some of the analysis done by VCA
are:

• VCA will detect if a potentially invalid pointer is used for a modifying opera-
tion

• VCA will detect the write accesses that exceed the size of the target object

• VCA will detect the usage of uninitialized variables

• VCA will detect calls to undefined functions

After the successful analysis, VCA outputs the finding to the command line. A
wrapper tool then reads these findings and creates the HTML report. The findings
or the final report will include the location of input files and information like the
severity of the error, warning, or remark.
VCA controls the reporting of false positives through a suppressing mechanism.
VCA also supports formal annotation. The user may provide additional information,
such as valid ranges of parameters or global variables. The location (line in the
source file) of the finding can be annotated by an instrumentation comment that
suppresses any findings that occur in the same line. Suppressed findings are not
entirely suppressed in the report but shown as ”accepted.”

4.1 VCA Framework

VCA framework is a platform on which the whole application has been developed.
From the figure given below, it is clearly visible that it contains several functional
entities like the front end, checks, analysis, report, and config.
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Front end: It is responsible for scheduling a set of tasks, and mainly it serves as a
controller for the whole framework. Some of the tasks scheduled by the front end
are:

• Configuration and command-line arguments are read through the front end

• Invoke clang + llvm to parse/link the source files

• Schedules the required analysis passes

• Execute the configured internal checks

• Report findings

Figure 4.1: Code Analysis Framework

Config: As the word suggests, this module is meant for loading and configuring
data. This module decides the source files that have to be checked, the plugins
that have to be executed, and determine the need for any additional plugin-specific
configuration fragments.

Analysis: This module is responsible for analyzing the control and data flow. The
result of this analysis will determine the pointer and range analysis.

Checks: It is responsible for evaluating the code based on the analysis results. It
will check whether the code is silent. The silence analysis checks evaluate the silence
requirements by performing analysis like pointer target analysis, index analysis, un-
defined and uncalled Function/Variable analysis, unreachable code check. It will
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prove the absence of interference concerning memory.

Report: This module collects the possible results of checks and provides it in a
readable format.

4.2 Static Single Assignment Form

Static Single Assignment Form (SSA or SSA Form) is a program representation that
makes the compiler optimization less complex by providing the data flow informa-
tion in a unique manner [40]. The data obtained from a CFG graph with def-use is
quite hard to analyze since each definition might have multiple uses and vice-versa.
SSA is an intermediate representation (IR) before the actual data flow analysis.
According to Andrew Appel, what exactly SSA Form represents is that each vari-
able in the program will only have one definition, which means each variable will be
assigned only once. So in order to achieve single-assignment, a new variable name
have to be provided for each assignment of the variable [36].

Figure 4.2: SSA Form of a simple straight-line code

Figure 4.2 is an example of the SSA Form. From the figure itself, it is clear how an
SSA form is constructed. The figure’s left-hand side indicates the normal represen-
tation, and the right-hand side indicates the SSA form. For representing it in SSA,
the user has to rename the variable for every new assignment and make sure there
are no multiple assigning of a variable. As its name depicts Static Single assignment
form, it deals only with static properties. Consider the variable a1, even though
its value is dynamic in nature, but the static property of the variable remains un-
changed during all instances (new assignment or definition of variable), that is the
static property that all instances labeled a1 refer to the same value will still hold
[37].
But there arise certain situations where we have to represent not only straight-line
code but also the code with branches. During these situations with branches, at
some point, the branches or control flow paths will merge, and a variable may have
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more than one possible point of definition, and it leads to the violation of the single-
assignment property. So how can we handle this situation?
For handling such a situation, we will make use of the � function. A � function is
of form F ! (X, Y...), where F, X, Y are variables, and the number of operands
X, Y denotes the number of control flow predecessors of the point where � function
occurs[51]. A � function will opt for the correct definition of a variable based on
the branch that was taken to enter the �-node. � functions are usually placed at
the beginning of basic blocks, and they will be executed simultaneously before the
execution of any other code in the block [37].

Figure 4.3: Example code (left), Control flow graph (Middle), and the control flow
graph in SSA Form (Right). � function and versioned variables are
shown (black background)

The above figure shows a code snippet, its control flow graph, and a control flow
graph in SSA Form. Here the expression x3 = �(x1, x2) is the point where branches
meet, x3 can assume either the value x1 or x2 it depends. x3 will be assigned with
the value of x1 if the control obtains from the first branch, or else it will have the
value x2. It is necessary to convert the program into SSA Form.
Some of the advantages of using the SSA Form are:

• While comparing with use-def chains, SSA chains are easy to store and update[52].

• Optimization is not accurate with the use of the use-def chain, more accurate
with SSA Form[74].
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• Every use of a variable is dominated by a definition of that particular variable
and the e�ciency of SSA optimization algorithms can be improved by making
use of this property[34, 39, 67].

4.3 Abstract Interpretation

Abstract Interpretation (AI) is a framework for program analysis, which is developed
by Radhia and Patrick Cousot; it will formalize the fixed-point (The fixed-point is an
over-approximation of program behavior) computation using an abstract domain and
abstract transfer functions[47, 48]. The formal sound approximation of a program
consists of proving that its semantics (what the program executions do) satisfies its
specification (what the program executions are supposed to do) [44]. It is a theory of
approximation that gathers and designs approximate semantics of programs. This
will be used to obtain information about programs in order to provide a sound
approximation. It can be viewed as a partial execution of the program without
performing all calculations and gain information about semantics. The semantics
obtained can be used to specify automated program analyzers. The main aim of AI is
to prove the soundness of program analysis methods where the answers will be either
partial or undecidable with respect to the semantics. The abstract interpretation
method is widely adopted in the design of static analyzers in order to confirm the
soundness of the analysis. Abstract interpretation aims to design automatic program
analysis tools for determining statically dynamic properties of programs. It is easy
to design unsound and non-terminating programs, but the design of terminating
and sound tools is complicated. One of the peculiar quality demands from the
static analyzers is the generation of very few or no false alarms. For achieving this,
abstract interpretation provides a systematic construction method based on the
e↵ective approximation of the concrete semantics, which can be (partly) automated
and/or formally verified [48, 50]. The correctness of abstract interpretation depends
on how e�ciently the connection between concrete and abstract semantics has been
made.
Some major terms concerning the abstract interpretation will be defined in the
following sections.
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Figure 4.4: Steps of Abstract Interpretation
[60]

4.3.1 Semantics

The semantics of Programming Languages unveil the most needed reasons under-
lying the applications of semantic techniques in computer science and introduce
the mathematical theory of programming languages [55]. That means it denotes
the program’s mathematical meaning and describes all the possible behaviors (non-
termination, termination with an error, or correct termination delivering one or more
output results) of these programs when executed for all possible input data. For
each part of programming language constructs, semantics is defined and connects
with the mathematical representation of its meaning [41, 48]. Usually, the questions
regarding the semantics are undecidable, and for that reason, it is not possible to
analyze it within a finite time [58].
Concrete Semantics of a program formalizes the set of all possible executions in
all possible execution environments. It is the most precise semantics, describing
the program’s actual execution very closely, which means it associates all the set of
execution traces that will be produced during analysis.

Curves in the above Figure 4.5 represent all possible executions during the analysis;
it is the abstract of standard semantics. Concrete semantics is undecidable since it
is impossible to write a program to cover all the possible execution paths.
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Figure 4.5: 2D Graph representing Concrete Semantics
[45]

4.3.2 Collecting Semantics

It is the first and most basic step needed for AI; all other analyses based on AI
evolved from this. It computes all the memory states that occurred during the exe-
cution of the program; in the meantime, it is a tedious task to discover all the exact
memory states during execution. It defines the reachable states from the initial state.
It is an abstract of the standard semantics; in this, all the irrelevant data concerning
the program’s execution will be filtered out [35]. Examples of collecting semantics
are computation traces, transitive closure of the program transition relation, set of
states/predicate transformers, forward/backward reachable states [47].

4.3.3 Abstract Semantics

Abstract semantics is an approximation of concrete semantics. AI uses abstract
semantics to obtain the program’s essential properties; to obtain di↵erent properties,
AI will use di↵erent abstract semantics. When the user wants to design an abstract
semantics, we can either take the concrete semantics as the reference, use a relatively
poor mathematical framework, or use the collecting semantics as the reference, and
derive the abstract semantics using the Galois connection framework[35]. Consider
the case of range analysis, there will be an upper and lower limit, and the properties
will di↵er. However, as mentioned earlier, di↵erent abstract semantics will be used
to obtain the upper and lower limit properties. The soundness of abstract semantics
is directly related to the collecting semantics.

4.3.4 Abstract Domain

The abstract domain is the superset of abstract semantics; it contains various ab-
stract semantics. An abstract domain is, in some way, an abstraction of the concrete
semantic domain. As mentioned earlier, concrete semantics is non-computable as it
is not possible to cover all the program execution path, so it is infinite and undecid-
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able. To avoid this, in the abstract domain, it will not consider some of the proper-
ties of the concrete semantic domain in order to make the domain computable and
computer representable. The abstract domain has to be correct because all states
derived in the concrete semantic domain should also be derived in the abstract do-
main, but the abstract domain will also include some states that will not occur in
the concrete one; users will get an over approximated result. There should then be
a correspondence between the concrete semantic domain and the abstract domain
to make sure that the abstract domain is actually a sound approximation of the
concrete semantic domain [41].

4.3.5 Galois Connection

The Galois connection is used to establish the correspondence between the concrete
and abstract domain. This corresponds to a perfect situation, where each concrete
property has a unique best abstract approximation. Abstract interpretation ex-
presses the connection between the two analyses using a Galois connection between
the associated property lattices [70]. The static analysis uses Galois connections be-
cause a Galois connection determines the tightest projection of a function over one
set, for example, the concrete transfer function, into another set. This projection
is frequently interpretable as the optimal static analysis [68]. There exist two kinds
of Galois connection; they are monotone and antitone Galois connection. However,
the monotone Galois connection is mainly used for static analysis, as it keeps the
precision of abstraction and concretization operation.

Figure 4.6: Galois Connection
[60]

The above figure shows the Galois connection between the concrete domain (red)
and the abstract domain (green).
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↵ denotes the abstraction function; it points from the concrete domain to a more
abstract domain.

� denotes the concretization function; it points from an abstract domain to a more
concrete domain.
The above-shown figure 3.6 is also an example of Galois insertion, a particular case
of Galois connection. It occurs when an abstract function guarantees to map all
elements of abstract lattice L.

4.3.6 Widening/Narrowing

It comes under the iterative resolution algorithm; it is one of the vital concepts of
AI. The above mentioned Galois connection concept works well for a finite abstract
domain but not for infinite; widening operators play a crucial role in particular when
innite abstract domains are considered to ensure the scalability of the analysis to
large software systems[46]. The narrowing is used to improve the accuracy of the
resulting analysis after widening.

4.4 False Alarms

False alarms may occur either because of less precision of abstract domains or due
to unsoundness. There exist two types of false alarms, they are:

False Positive: Less precise or incomplete abstraction leads to false positives; it
may incorrectly judge a correct statement as problematic.

False Negative: It occurs due to unsound abstractions; the program will be re-
garded as correct according to the specification even if it is not correct.
The above figure displays the occurrence of a false alarm, specifically a false positive.
It occurred because the abstract semantics overlapped with the forbidden zone, and
the concrete semantics does not lead to raising a false alarm, but in reality, no error
will occur. It is a consequence of the over-approximation of program execution.
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Figure 4.7: False Alarm
[45]

4.5 Sound and Unsound static analysis

A sound analyzer will analyze the code concerning a class of defects it can detect
safely and exhaustively. However, sometimes soundness comes with the expense of
false alarms (false positives).
An unsound analyzer might fail to raise alarms even for faulty code lines, leading to
severe problems.
A sound analysis tool will never report a faulty program as correct, but it may raise
a few false positives. Unsound tools will generate false-positive and false-negative
alarms, a↵ecting the program’s quality. An unsound analysis tool might produce
fast, mostly noise-free outputs by entirely ignoring large or di�cult-to-analyze func-
tions; this usually results in low precision. Here lies the significance of a sound
analyzer; it outputs accurate and precise results, though it may contain some false
positive alarms. Also, a sound tool reports the assumptions it makes so that others
can verify them means which in turn helps to build trust in the tool [24].

The di↵erence between the sound and unsound tool is shown in figure 4.8. The
Green colored area depicts the area where the program is correct, and the other
shows the area with a defect. The dotted circle denotes the results generated by
each tool, with the programs inside the circle being reported as correct and the
programs outside the circle are erroneous.
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Figure 4.8: Di↵erence between a sound and unsound tool
[32]

4.6 Data flow Analysis

A basic definition of data flow analysis is provided in Chapter 2. Data flow analysis
is one of the instances of abstract interpretation, and it is done with a control
flow graph, graphical representation of the program. Data flow analysis can be
carried out either forward or backward or sometimes in both directions, but VCA is
concerned about forward analysis only. In forward data flow analysis, the analysis
begins from the entering node of CFG up to the exit node and computes input
by taking the union or intersection of all of the predecessors’ outputs and getting
output by reasoning locally about the facts generated and killed at that point[11].
There exists some important concepts and optimization techniques while considering
forward data flow analysis:

• Reaching Definition

Reaching definition is a data flow analysis that statically determines which defi-
nitions may reach a given point in the code. Its primary task is to identify the
connection between the variable definitions and variable uses.
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Figure 4.9: Reaching Definition with two nodes

Figure 4.10: Reaching Definition with three nodes

The CFG with two nodes is an example for reaching definition as the node D1
reaches D2. However, in figure 4.10, the CFG node D1 does not reach D3 as it gets
killed (definitions terminated by some other definitions in the basic block) by D2.
For straight-line code, it is easier to calculate reaching definition; otherwise, need to
use the iterative algorithm.
Use-Def chains (UD Chain) are computed using the reaching definition. A UD chain
will contain all the use U of a variable, and it is definition D, it is meant for assigning
a value to a variable.
Def-use chain (DU Chain) its counterpart links each definition of the variable to
those uses which that definition can reach. SSA encodes def-use information in
linear space, and it is not possible to add new names to the symbol table at all
assignments in SSA form. So most implementations provide def-use chains for each
definition [73, 9].

• Constant Propagation

Constant propagation is the process in which the values of known constants will be
substituted in expressions during compile time, which means the constants assigned
to a particular variable can propagate through the CFG and can be assigned to the
variable when needed.

a = 21;
b = a + 9;

In the given code fragment, the value of the variable ’a’ can be propagated and
substituted in line 2.
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a = 21;
b = 30;

This is how the code fragment will change after constant propagation. The general
approach for performing constant propagation is:

• Create the CFG for a given program.

• Relate the transfer functions(The transfer function is a mapping from one
environment to the other that corresponds to the semantics of its source node)
with the edges of CFG.

• Maintain the value of the variable.

• Iterate till the value of variable stabilize [66].

Sparse conditional constant propagation is a similar kind of optimization technique
like constant propagation, applied in compilers after conversion to SSA form. It
simultaneously removes some kinds of dead code and propagates constants through-
out a program. It optimizes the code by making use of abstract interpretation of
the code in SSA form [74, 43].

• Available expression Analysis

It is a forward data flow analysis problem, which determines whether an expression
that has been computed previously can be reused or not. An expression (a*b) is
said to be available at a particular point if every path from the initial node to that
point must evaluate a*b before reaching that particular point, and there must not
be any assignments to a or b after the evaluation but before reaching that point.
It’s mainly used to perform Common Sub expression Elimination (CSE).
Common Sub expression Elimination is an optimization technique which is used to
eliminate common or identical subexpression. For CSE, analyze the program and
search for identical expressions and replace it with a single variable holding the value
[67].

x = a + b;
y = (a + b) * c;

In the given code snippet, the expression a + b is repetitive, and according to CSE,
it will replace the second occurrence of the subexpression with a single variable by
analyzing factors like cost, storing time.
There exist two kinds of CSE, they are local and global CSE. Local CSE is applicable
only for a single basic block, whereas the global CSE is meant for the whole function.
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4.7 Clang/LLVM

LLVM stands for Low-Level Virtual Machine; an open-source project initially devel-
oped by Swift language creator Chris Lattner as a research project at the University
of Illinois; it is an SSA-based representation capable of representing all high-level
languages. It is the standard code representation used throughout all phases of the
LLVM compilation strategy [20]. It provides tools for automating many of the most
thankless parts of language creation: creating a compiler, porting the outputted code
to multiple platforms and architectures, generating architecture-specific optimiza-
tions such as vectorization, and writing code to handle common language metaphors
like exceptions [30]. The core of LLVM is the intermediate representation (IR), a
low-level programming language similar to assembly. IR is a strongly typed reduced
instruction set computing (RISC) instruction set that abstracts away most details of
the target; it can be represented in three di↵erent forms as an in-memory compiler
IR, as an on-disk bit code representation, and as a human-readable assembly lan-
guage representation and all these representations are equivalent. LLVM can then
compile the IR into a standalone binary or perform a JIT (just-in-time) compilation
on the code to run in the context of another program, such as an interpreter or
runtime for the language [30]. LLVM uses SSA form in its IR for the direct data
flow, and VCA uses SSA for the indirect data flow. In VCA, it acts as a back end;
on the front end, it uses Clang, which is a compiler for the programming languages
like C/C++.

Figure 4.11: Overview of LLVM compilation strategy
[59]

Clang is a compiler front end for the programming languages like C/C++. The
primary design concept for clang is its library-based architecture in order to allow
the compiler to be more tightly tied to tools that interact with source code, such
as an integrated development environment (IDE) graphical user interface (GUI) [4].
The main advantage of using Clang over its competitors is it is faster, uses less
memory, and is based on a modular design. Also, it o↵ers more readable error and
warning diagnostics, highlights the related source, and for certain kinds of common
errors, it provides hints for rectifying it [19].
Figure 4.12 is an example of an error output made by Clang. From the figure itself, it
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Figure 4.12: output of an error

can be realized that the clang output is much more expressive than its competitors,
so the user can easily understand the error and helps to fix the problem faster.
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5.1 How Vector Code Analyzer works

The previous chapter mentioned the framework of VCA and the techniques used by
VCA to perform the static analysis. This chapter will emphasize projecting how
VCA analyses the code in its di↵erent stages and, finally, the output of VCA.

Figure 5.1: Architecture of Vector Code Analyzer

The above figure shows the architecture of VCA. VCA behaves like a compiler,
and it will analyze the code only if it is error-free; also, for performing the analysis,
the user needs to provide the static code files, generated source code, and finally, the
paths for locating the files. Once the given code finds error-free, VCA will perform
the static code analysis.
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Figure 5.2: Analysis process of Vector Code Analyzer

5.1.1 Code optimization

Code optimization is the very first procedure for performing the analysis. It is done
to improve the e�ciency and performance of the code and the e↵ective usage of
memory space. Usually, a code is optimized by removing unwanted code lines and
by rearranging the code lines. There exist several code optimization techniques like
reaching definition, constant propagation, and available expression analysis. All
these techniques are defined in section 4.6.

5.1.2 Flow-insensitive pointer analysis

It ignores the flow of control in a program, mostly used for whole program analysis,
and computes what memory locations pointer expressions may refer to, at any time
in program execution[23].
In the given code segment, it shows how a flow-insensitive pointer analysis is done.
In the example, *a might point either to 0, &c, or &d.
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Figure 5.3: Flow-insensitive pointer analysis

5.1.3 Approximate indirect callgraph

The use of pointers creates serious problems for software productivity tools that use
some form of semantic code analysis for software understanding, restructuring, and
testing as it enables indirect memory accesses and indirect procedure calls. The
call graph represents the relationship between program procedures. For example,
consider an edge (P1, P2), which means procedure P1 may call procedure P2. This
information is essential for program comprehension. However, such tools face a
problem when the program contains indirect calls through function pointers. In
this case, some form of pointer analysis may be necessary to disambiguate indirect
calls[65].
In the given code snippet, the callgraph for the function test has been shown.

Figure 5.4: indirect callgraph
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5.1.4 Calculate side e↵ect for each function

A function or expression is said to have a side e↵ect if it modifies a state outside
its scope or has an observable interaction with its calling functions or the outside
world. Some examples of side e↵ects are:

• Modification of a global or static variable

• Modification of function arguments

• Writing data to a display or file

• Reading data

• Calling other side-e↵ecting functions

In the presence of side e↵ects, a program’s behavior may depend on history. Un-
derstanding and debugging a function with side e↵ects requires knowledge about
the context and its possible histories[72, 57]. The given code snippet contains four

Figure 5.5: calculation of side e↵ect

functions, and the given table shows the functions and the variables modifies or used
by the functions.
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5.1.5 Calculate def-use chains

The topic def-use chain is defined in section 4.6.

5.1.6 Combined data flow analysis

Combined data flow analysis is an LLVM pass that can query domain-specific values
of nodes in the data flow graph. The analysis uses the generic framework to sup-
port dependencies between di↵erent analysis domains. For each domain, at least one
analysis is implemented. To facilitate usage of combined DFA during abstract execu-
tion (e.g. within the condition manager), a combined DFA environment is provided
that wraps the analysis manager assigned to the combined DFA. This environment
just forwards requests to unbound values to the analysis manager. If the value is
not yet available, an empty set is returned. Users might query the isAllAvailable
method to check whether the environment has any unfulfilled requests.
Combined DFA comprises of:

• Pointer refinement: Refine approximate pointer values using refined callgraph,
def-use chains, and ranges.

• Callgraph refinement: It calculates the caller of a function. The analysis uses
the imprecise results from the inverse callgraph and restricts them by the
context-sensitive results of the pointsto domain.

• Def-use refinement: It calculates the definitions of a variable. The analysis
uses the imprecise results from memory SSA and restricts them by the context-
sensitive results of the pointsto and callgraph domain.

• Range analysis: It calculates the possible ranges for variables. For any point
in the type integer program, its range can be requested and is computed by
the Combined DFA demand-based.

47



5 Existing state of Vector Code Analyzer

5.2 Output of Vector Code Analyzer

After the successful analysis, VCA generates its output in text format.

Figure 5.6: Output of VCA

This is how the output of VCA looks like. The output window consists of all the nec-
essary information for the user after the successful analysis. It provides information
regarding the issues like array out of bounds, unknown pointer, and more. However,
the main problem lies in understanding the root cause of these issues. Since the out-
put window is not responsive, and even though it shows the issue, it is a tiresome
job for the user to find the exact locations of the issue in code and the root cause.
Because the output window doesn’t provide any additional information other than
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the type and location of the issue, also it’s impossible to know the severity of these
issues and not possible to comment about these issues in VCA.
So due to the existing scenario, the user is forced to do a manual analysis to un-
derstand the issues in the code even after the successful analysis using VCA. This
causes much burden to the user as the complexity of analysis increases exponentially
with the number of code, and there is even a possibility for skipping some of the
mistakes while analyzing manually. Due to these limitations, VCA cannot fulfill its
intended purpose. So how these issues directly a↵ecting the users?

5.3 Issues concerned with the users

The primary benefits users expect from the automated static analysis are e�ciency,
accuracy, and less time consumption. Even after the successful analysis, there arise
certain situations where the user has to perform manual analysis to verify whether
the tool’s findings are correct.
Some of the major hurdles faced by users during manual and automated analysis
are:

• Time-consuming: Manual analysis took a lot of time and needed expertise for
the analysis; otherwise, it would not be e↵ective.
In the case of analysis using automated tools, it is possible to perform the
analysis within a short span, but in the end, the user has to analyze the
result.

• False positives/negatives: Manual analysis by an expert might probably give
less false positive/negative issues.
Whereas in the case of automated tools as well, users have to verify each
issue, and if a tool generates more false positives, it might lead the user to
skip specific issues and a↵ect the accuracy of the result. No tool will produce
zero false positive/negative, but they tried to make this issue minimal.

• Code coverage: With the automated analysis, it is possible to analyze the
source code broader, faster, and it is possible to repeatedly perform the analysis
without much e↵ort. The analysis with a tool can be performed by a user with
minimal knowledge in the field of development.
In manual analysis, it is really hard to make sure whether full code coverage
has been gained, and as mentioned earlier, it is a time-consuming process.

These are some of the general concerns faced by the users. It is clear that for
performing the static code analysis, it is always better to have an e�cient tool and
a manual analysis of the result. By this combination, it is possible to ensure the
e�ciency and quality of the code. It is not wise to entirely depend on automated
tools or manual analysis because both have their limitations.
Manual analysis requires a large amount of the developer’s time, and the project
can be delayed for days or weeks. The chance of negligence or skipping of the issue
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is also there, which might cause some serious issue once the software is delivered.
It will cost huge to rectify those issues in the later stage, and the impact of these
issues will also vary on the type of software/code that has been analyzed.
Like all software, static analysis tools are a collection of trade-o↵s. If they go for
speed, their analysis’s depth su↵ers and get more false positives. Once they try
to reduce the false positives, they run slower, and in the case of inexpensive tools,
they might have less expertise and less original research behind them. One tool may
be very good at catching some classes of bugs, and another tool may be good at
catching other classes of bugs; none are likely to be good at catching all classes of
bugs. These trade-o↵s will a↵ect the tool results[62]. From these, it is clear even if
the user uses the most e�cient tool available in the market it has to be follow up
with manual analysis. The reviewer definitely have the knowledge about the tool
and aware of the pros and cons of the tool. This will help the reviewer to weed out
the problems before they ever waste a developer’s time by shielding them from the
noise that all static analysis tools create.
So how can we improvise the e�ciency and accuracy of Static code analysis? From
the data that has been analyzed, the result made by the most e�cient static analysis
tool has to be analyzed manually. It is possible to reduce the complexity of manual
analysis to a certain extent if the code becomes more transparent, and it can be
achieved by the visualization of data flow. VCA is also an e�cient static analysis
tool, and the major drawback faced by VCA is in the complexity and e↵ort required
for analyzing the output generated by it.
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So how is it possible to reduce the complexity of manual analysis of output, ensuring
the code’s maximum e�ciency and quality? The reviewer’s vast amount of time is in
understanding the root cause of the issue and data flow. Though the VCA provides
the location and cause of the problem, the reviewer has to traverse across the code
to determine the actual cause of the issue, and the reviewer has to understand the
exact data flow, which is practically impossible. However, there is a solution to
overcome this issue by making the code more transparent by visualizing the data
flow, which will allow the reviewer to understand the code better and discover the
root cause of problems.

6.1 Output window

Figure 6.1: Conceptual output window

The main limitation caused by VCA is its unresponsive output window. The
conceptual output window shown in figure 6.1 will help overcome the limitations of
existing output by VCA to a specific limit.
The left side of the output window contains the data table displaying the file name.
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It comes with a search bar as well as a sort option. While selecting a particular
file, the data on the file will get displayed on the editor pane, and the chosen file
gets highlighted on the table, so the user will be able to identify the selected file.
Once the file is selected, it will be displayed on the editor pane, and the reviewer
can go through the file. The thesis considers the evaluation of single-page code only.
The search bar helps to find the file easily if there are more files by just typing the
required file’s name and the sorting button helps to sort the files. The code displayed
on the editor pane is responsive, while hovering over the data variable, it will display
the range of the variable, and while clicking on a particular data variable, the data
flow of that selected variable will get displayed on another window.

6.1.1 Range analysis of variable

The range of a data variable is also shown in the existing result window of VCA.
However, the result window is in text format. Contrary to the existing result window,
here while hovering over the variable, a pop up will get displayed, and it shows the
range of the variable, and its location. So how the range of variables is determined.
For determining the range of the variable, VCA uses an interval set. The precision
is gained over representing possible integer values by a single interval. Such a single
interval can be represented as a llvm::ConstantRange, which consists of a lower and
an upper bound. Regarding stability, an unstable interval set means that the in-
terval set size increases after evaluating compared to the last result of the analysis.
Once a fixed point is reached and the intervals of a node are determined, the interval
set is stable and is the only relevant result. Since the CombinedDFA computes an
over-approximation, an interval set computed for an integer variable of a program
has the following meaning: during the program’s execution, the variable can only
assume values contained in the intervals. States in which a variable would assume a
value not contained in its intervals are unreachable. Due to the over-approximation,
it is, however, possible that there are elements contained in the intervals that can
never actually be assumed in any run of the program. It is necessary to make an
accurate approximation and need to avoid this kind of over approximation or under
approximation. This can be achieved by abstract interpretation.
The precise range of the variable is essential in compiler optimization, program
checking, and computing the minimum bit-width requirement. The choice of ab-
stract domain and the mapping between its members and the concrete values creates
a trade-o↵ between the quality of results and the analysis running time[47]. Abstract
interpretation is not perfect, but for fixed point computations, it is a perfect choice.
William Harrison does the first work related to the variable value range using ab-
stract interpretation by proposing a framework that combined two mechanisms, and
they are range propagation and range analysis. This helps to avoid the potentially
costly fixed-point computation on looping constructs[56].

• Range propagation: It is a simple algorithm that uses the data and the con-
ditional structure of a program to derive and propagate refinements in the
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accuracy of range information. First, it transforms the analyzed program into
the Static Single Assignment (SSA) form. A range is defined for each point
in the program, and the algorithm iteratively computes refinements of range
information using specially defined transfer functions that operate on ranges.
This algorithm is e↵ective on straight-line code, unfortunately this algorithm
is not e↵ective in the case of loops[56].

• Range analysis: It is an algorithm that tracks the changes to a variable at each
point of the program but does so by avoiding the loop’s conditional structure.
The information obtained is then used as a base for induction to derive a
range of values for the variable. Ignoring conditional branches in the loop
structure limits the accuracy of this technique for range analysis. However,
if the problem is to identify unused or compile-time bound bits in a variable,
this result with limited accuracy still may su�ce[56].

The results obtained from range propagation and range analysis are combined, and
the required approximation of range is made.

Figure 6.2: Example for range propagation
[64]

Steps 1 - 6 in figure 6.2 denotes the forward, and 7 - 12 denotes the backward range
propagation. Forward range propagation is done using Breadth-First search, and it
will carry out until a fixed point, or exit point is reached. Backward range propa-
gation is done to refine the range values obtained from forward range propagation.
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6.2 Visualization of straight-line code

As mentioned earlier, the output window is responsive, and while clicking on a
particular variable, it will display the data flow for that particular variable.

Figure 6.3: Simple C code for swapping

The above code segment shows a simple C code for swapping. It is a straight-line
code means a section of a program in which instructions are executed sequentially
without jumps, branching, or looping. The code segment variable ’x’ is highlighted;
how can the reviewer determine the data flow of variable x. They usually have to
perform the manual analysis, and for this particular code segment, it can be done
quickly. However, it will not be the same for all scenarios depending on the number
of code lines and usage of the variable.
The complexity can be reduced by visualizing the data flow of the variable. So in
the above-given code fragment reviewer have to identify the data flow of variable x,
for that click on the variable x in the output window, while clicking on the variable
will redirects the reviewer to an alternate output window, there it will show the
significant code lines corresponding to the variable and the output window comes
along with a slide bar and two buttons(Prev, Next). The user can click on or drag
the mouse over the slider bar to jump to a particular point or use the VCR-style
navigation buttons to step forwards and backward over the code lines. This will allow
the user/reviewer to understand the code better and the data flow of a particular
variable. Instead of providing the entire data flow of the code, the user can access
the data flow of the concerned variable, which will also help save time. Because if
there is an error, the output window will provide the exact location and cause of the
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error, then in order to determine the root cause or to do an analysis, what the user
has to do is to click on the concerned variable and analyze the data flow, this will
provide a better insight to the code and reduce the time and complexity of manual
analysis. Figures 6.4 and 6.5 show how the data flow analysis of straight-line code

Figure 6.4: Initial step of data flow analysis

Figure 6.5: Final step of data flow analysis

has been made. Here as shown in both figures, while clicking on the variable, it takes
the user to the alternate output window; the corresponding code lines related to the
variable will get displayed; here in the figure, it is variable x. Only the relevant
section of the code will get displayed here, and the user can visualize the data flow
with the help of navigation buttons and slide bar and understand the data flow with
ease. The arrow mark will also provide the user a better overview of the data flow,
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and as shown in the figure, with the help of codelens user can see the value of the
variable while traversing across the lines as shown in figure 6.5. The relevant data
regarding the data flow will get from VCA after the successful analysis.
Code folding is a technique, which allows the user to fold and unfold certain parts of
code selectively. This allows the user to manage large amounts of text while viewing
only those subsections of the text that are specifically relevant at any given time.
For example Functions, there might be certain situations when there is no need to
display the whole function; in such cases, it is better to use the folding technique,
which will provide a better view of the resulting output window.

Figure 6.6: Example for folding

The topmost portion of the figure displays the folded function, and the other portion
shows the unfolded function section.

6.3 Visualization of loops

Above mentioned techniques work well with straight-line code, but it is not su�-
cient for conditions like loops, branches, and decidability problems. For straight
lines code, the user can seamlessly traverse across the code lines and understand
the data flow, but for codes having loops or some conditions, it will be hard to
understand and consumes much time for analysis.
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Figure 6.7: concept for loops

In figure 6.7, a code segment with a simple for loop is shown. After the com-
binedDFA and range analysis, an approximate range will be obtained, and this data
has been fed to the result window. But how the user can make use of this data
in a useful manner. If the previously used method is used here, then the user has
to traverse across the code for n times depending on the loop limit while analyzing
the result. That means the user does not get many benefits. In order to overcome
this, apart from the slide bar and buttons introduced a popup box. So whenever
the user encounters a loop, a popup will be displayed, and the user will get to know
the number of iterations and either skip all these iterations or else they can choose
the desired iteration step or one which is causing the issue.
For displaying the iterations narrowing operator of abstract interpretation has a
significant. The interval set received after the range analysis has to be trimmed, as
displayed in figure 6.7. With the widening/narrowing operator’s help, it is proved
that infinite abstract domains can lead to useful static analyses for a given program-
ming language that is strictly more precise and equally e�cient than any other one
using a finite abstract domain or an abstract domain satisfying chain conditions[48].
As previously mentioned in section 4.3.6 narrowing operator is used to increase the
accuracy of the result generated after widening because, in many cases, it overshoots
and provides improper results. Consider the following code:

x = 1;
while(*) {
x = 2; }

In the given code, after widening x’s abstract value will become [1,1], but the more
accurate value is [1,2]. That is narrowing operator will get iterate until it reaches sta-
bilization or after reaching the maximum number of iterations. After every iteration
solution get more precise, but it works only for monotonic (for a bigger set of states,
the constant that includes all the states does not become smaller) functions[53, 69].
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Almost a similar kind of representation is used to analyze decidability problems and
code with branches. It will help the users if the complex/confusing part of the code
can be represented as flow charts.

Figure 6.8: Code with decidability problem

The code segment given in the code highlights one of the most critical concerns dur-
ing the manual analysis of the output. Consider the variable ’a’ that is highlighted
in the code segment. What might be the value of that variable? Its value depends
on the condition at line number 4. Depending on that condition, the value of a
variable can be either 3 or 7. There is only one condition in the given example, and
it can be understood from the code without much di�culty. However, the di�culty
increases exponentially with the number of conditions.
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Figure 6.9: Concept for the decidability problem

A flowchart representation will give the user better clarity in this kind of situation.
So here, while clicking on the variable ’a’, it will redirect the user to the alternate
output window having the code lines that are associated with that specific variable,
and when enters at the condition during the analysis, the flow chart representation
of the condition will get displayed and helps the user to understand the possible
value that the variable will hold.

6.4 Environment preparation

6.4.1 Vue.js

The whole concept is developed on the Vue.js framework. It is an open-source
modelviewview model front-end JavaScript framework for building user interfaces
and single-page applications. Unlike other monolithic frameworks, Vue is designed
from the ground up to be incrementally adoptable. The core library is focused on the
view layer only and is easy to pick up and integrate with other libraries or existing
projects[63, 31]. Prerequisites for installing Vue.js are:

• Nodejs: Nodejs is a JavaScript run time built on Chrome’s V8 JavaScript
engine for front-end development. Nodejs uses npm as the package manager,
which helps maintain the external JS library dependencies used in the GUI
development[21].

• Vue CLI: It is the standard tooling baseline for the Vue ecosystem. It ensures
the various build tools work smoothly together with sensible defaults[31].

• Visual Studio Code: It is a free source code editor; it supports Vuejs.

• Browser: It is necessary to view the GUI developed using Vuejs and debugging
if there are any issues related to development.
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6.4.2 Monaco editor

Monaco editor is the editor used during the project creation. It is the code editor
that powers the VS code. It is easy to set up the Vuejs project, and it has a handful
of features. For installation, please refer to the o�cial website[28].
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7 Conclusion

This thesis provides concepts for visualizing the data-flow to reduce the complexity
of analyzing the output window VCA, a static code analysis tool. These tools’ main
goal is to ensure that the coding and compliance standards are met and to point out
errors. The ine↵ective static analysis may create several issues as it is being carried
out in the early development stage. The issues that remained unnoticed or skipped
will a↵ect future code development, and it becomes tough to figure out the issue; it
is almost impossible to recreate the problem. The rectification of these errors will
cost more and consumes much time.
With data-flow visualization, users will better understand the code, and the analysis
of output becomes less complicated as the code gets more transparent. The e↵ective
static code analysis by VCA and the concepts mentioned in this thesis will result in
the analysis’s betterment. The major hurdle lies in analyzing the tool’s results, and
by visualizing the data-flow and making the result window responsive, the user can
analyze the result with much ease. After the successful analysis, the user can analyze
the result without any problem as the mentioned concepts will help the user identify
the root cause, find the data-flow of a variable, and the overall understanding of the
code. This will help perform result analysis with time e�ciency and reduce the risk
of finding the error’s root cause.
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8 Future Scope of Work

This thesis work will pave the way for several exciting research opportunities. The
topic visualization of data flow itself is a unique research topic with many possibilities
regarding the static analysis. Several tools and methods are used to analyze the
code, but none of the methods are e�cient enough to understand the data-flow,
which is essential to understand the code. This thesis is an elementary work that
aims to provide a concept for the visualization of data flow. It focused mainly on
visualizing the data flow of content from a single file, so it is possible to extend the
work to visualize data flow having multiple files. This is one of the most needed and
interesting extension in the case of visualization of data flow. In most cases, static
code analyzers have to analyze solutions having multiple files, and a concept for this
will helps the developers in the future and reduce the complexity in understanding
the code.
The loops and conditions are visualized as flowcharts; for a single file code, it is
manageable, but when dealing with multiple files, it is better to find an alternate
mechanism for displaying the visualization instead of a popup.
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